S.E. (Civil Engg.) (Semester - III) Examination, December - 2014

 ENGINEERING MATHEMATICS - III (Revised)Sub. Code : 63338
Day and Date : Friday, 05-12-2014
Total Marks : 100
Time : $\mathbf{1 0 . 0 0}$ a.m. to $\mathbf{1 . 0 0}$ p.m.
Instructions: 1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Use of calculator is allowed.

SECTION - I

Q1) Solve any three of the following
a) $\left(D^{2}+4\right) y=x \sin 3 x$
b) $\left(D^{4}+8 D^{2}+16\right) y=\cos 2 x$
c) $x^{2} \frac{d^{2} y}{d x^{2}}+4 x \frac{d y}{d x}+2 y=e^{x}$
d) The differential equation of cantilever beam of length l and weighing W $\mathrm{kg} /$ unit length, subjected to horizontal compressive force P applied at the free and is given by EI $\frac{d^{2} y}{d x^{2}}+P y=\frac{-1}{2} W x^{2}$. If $y=\delta$ and $\frac{d y}{d x}=0$ at $x=l$ and $\frac{d^{2} y}{d x^{2}}=0$ at $x=0$. Find the maximum deflection δ of the beam where $\frac{\mathrm{P}}{\mathrm{EI}}=\mathrm{n}^{2}$

Q2) Attempt any two of the following
a) Prove that $\nabla\left[\frac{\bar{a} \cdot \bar{r}}{r^{n}}\right]=\frac{\bar{a}}{r^{n}}-\frac{n(\bar{a} \cdot \bar{r}) \bar{r}}{r^{n+2}}$ and $\nabla\left[\frac{1}{r}\right]=\frac{-\bar{r}}{r^{3}}$.
b) Find the directional derivative of $\phi=2 x^{3} y-3 y^{2} z$ at $P(1,2,-1)$ in the direction of $\mathrm{Q}(3,-1,5)$. Also Find $\operatorname{Div}(\overline{\mathrm{F}})$ and $\operatorname{Curl}(\overline{\mathrm{F}})$ at $(1,-1,1)$ if $\overline{\mathrm{F}}=x^{2} z i-2 y^{3} z^{3} j+x y^{2} z^{2} k$.
c) Find a, b, c if $\overline{\mathrm{F}}=\left(\mathrm{axy}+\mathrm{bz}^{3}\right) i+\left(3 \mathrm{x}^{2}-\mathrm{cz}\right) j+\left(3 \mathrm{xz}^{2}-\mathrm{y}\right) k$ is irrotational and find its scalar potential ϕ such that $\overline{\mathrm{F}}=\nabla \phi$ and also find value of a if $\overline{\mathrm{G}}=(x+3 y) i+(y-2 z) j+(a z+x) k$ is Solenoidal.

Q3) Attempt any two of the following

a) Find the best values of a and b in the law $y=a e^{b x}$ by the method of least squares from

$$
\begin{array}{lcccccc}
\mathrm{x} & = & 0 & 5 & 8 & 12 & 20 \\
\mathrm{y} & = & 3 & 1.5 & 1 & 0.55 & 0.18
\end{array}
$$

b) Find the line of regression and hence coefficient of correlation from the following data

$$
\begin{array}{lllllll}
\mathrm{x} & = & 10 & 14 & 18 & 22 & 26 \\
\mathrm{y} & = & 18 & 12 & 24 & 6 & 30 \\
3
\end{array}
$$

c) Fit a second degree curve to the following data and estimate the production in 1975

$$
\begin{array}{lllllllll}
\text { Year } & \begin{array}{lllllll}
1921 & 1931 & 1941 & 1951 & 1961 & 1971 & 1981 \\
\text { Production }(\mathrm{m} \text { tons }) & = & 3 & 5 & 9 & 10 & 12
\end{array} & 14 & 15
\end{array}
$$

Q4) Attempt any Two of the following
a) If the probability that an individual suffers a bad reaction from a certain injection is 0.001 , determine the probability that out of 2000 individuals
i) exactly 3
ii) more than 2 Individuals
iii) none
iv) more than one individual will suffer a bad reaction
b) In a sample of 1000 cases, the mean of a certain test is 14 and standard deviation is 2.5 . Assuming the distribution to be normal, find
i) how many students score between 12 and 15 ?
ii) how many score above 18 ?
iii) how many score below 8 ?
iv) how many score 16 ?
[Given : For S.N.V.Z, area from $\mathrm{z}=0$ to $\mathrm{z}=0.4$ is 0.1554 ,

R-1082

area from $\mathrm{z}=0$ to $\mathrm{z}=0.6$ is 0.2257 , area from $\mathrm{z}=0$ to $\mathrm{z}=0.8$ is 0.2881 , area $\operatorname{from} \mathrm{z}=0$ to $\mathrm{z}=1$ is 0.3413 , area from $\mathrm{z}=0$ to $\mathrm{z}=1.6$ is 0.4452 , area from $\mathrm{z}=0$ to $\mathrm{z}=2.4$ is 0.4918]
c) i) Find the probability of getting 4 heads in 6 tosses of a fair coin.
ii) If the probability density function is given by

$$
f(x)=k x^{2}\left(1-x^{3}\right), 0 \leq x \leq 1
$$

Find k.
Q5) Attempt any Three from the following
a) Find the Laplace transform of

$$
\frac{e^{-4 t} \cdot \sin 3 t}{t}
$$

b) Find the Laplace transform of $t^{2} \cos a t$.
c) Using convolution theorem, find inverse Laplace transform of

$$
\frac{1}{s\left(s^{2}+a^{2}\right)}
$$

d) Solve using Laplace transform

$$
y^{\prime \prime}+y=\sin 3 t, y(0)=0, y^{\prime}(0)=0
$$

Q6) Attempt any Two of the following:
a) Evaluate $\int_{C} \frac{e^{z}}{\left(z^{2}+\pi^{2}\right)^{2}} d z$ where c is $|z|=4$.
b) Find the value of the integral

$$
\int_{0}^{1+i}\left(x-y+i x^{2}\right) d z
$$

i) along the straight line from $\mathrm{z}=0$ to $\mathrm{z}=1+\mathrm{i}$
ii) along the real axis from $\mathrm{z}=0$ to $\mathrm{z}=1$ and then along a line parallel to the imaginary axis from $\mathrm{z}=1$ to $\mathrm{z}=1+\mathrm{i}$.
c) Show that the function $u=3 x-2 x y$ is harmonic and find corresponding analytic function.

